1 Given that $\csc^2 \theta - \cot \theta = 3$, show that $\cot^2 \theta - \cot \theta - 2 = 0$.

Hence solve the equation $\csc^2 \theta - \cot \theta = 3$ for $0^\circ \le \theta \le 180^\circ$. [6]

- 2 Archimedes, about 2200 years ago, used regular polygons inside and outside circles to obtain approximations for π .
 - (i) Fig. 8.1 shows a regular 12-sided polygon inscribed in a circle of radius 1 unit, centre O. AB is one of the sides of the polygon. C is the midpoint of AB. Archimedes used the fact that the circumference of the circle is greater than the perimeter of this polygon.

Fig. 8.1

(A) Show that $AB = 2 \sin 15^{\circ}$.

[2]

[2]

[3]

- (*B*) Use a double angle formula to express $\cos 30^\circ$ in terms of $\sin 15^\circ$. Using the exact value of $\cos 30^\circ$, show that $\sin 15^\circ = \frac{1}{2}\sqrt{2-\sqrt{3}}$. [4]
- (C) Use this result to find an exact expression for the perimeter of the polygon.

Hence show that
$$\pi > 6\sqrt{2 - \sqrt{3}}$$
. [2]

(ii) In Fig. 8.2, a regular 12-sided polygon lies outside the circle of radius 1 unit, which touches each side of the polygon. F is the midpoint of DE. Archimedes used the fact that the circumference of the circle is less than the perimeter of this polygon.

Fig. 8.2

- (A) Show that $DE = 2 \tan 15^{\circ}$.
 - (*B*) Let $t = \tan 15^\circ$. Use a double angle formula to express $\tan 30^\circ$ in terms of t. Hence show that $t^2 + 2\sqrt{3}t - 1 = 0$.
 - (C) Solve this equation, and hence show that $\pi < 12(2 \sqrt{3})$. [4]
- (iii) Use the results in parts (i)(C) and (ii)(C) to establish upper and lower bounds for the value of π , giving your answers in decimal form. [2]

PhysicsAndMathsTutor.com

3 Express $\sin \theta - 3 \cos \theta$ in the form $R \sin (\theta - \alpha)$, where R and α are constants to be determined, and $0^{\circ} < \alpha < 90^{\circ}$.

Hence solve the equation $\sin \theta - 3\cos \theta = 1$ for $0^{\circ} \le \theta \le 360^{\circ}$. [7]

Fig. 8

In a theme park ride, a capsule C moves in a vertical plane (see Fig. 8). With respect to the axes shown, the path of C is modelled by the parametric equations

$$x = 10 \cos \theta + 5 \cos 2\theta$$
, $y = 10 \sin \theta + 5 \sin 2\theta$, $(0 \le \theta < 2\pi)$,

where x and y are in metres.

(i) Show that $\frac{dy}{dx} = -\frac{\cos\theta + \cos 2\theta}{\sin\theta + \sin 2\theta}$.

Verify that $\frac{dy}{dx} = 0$ when $\theta = \frac{1}{3}\pi$. Hence find the exact coordinates of the highest point A on the path of C. [6]

(ii) Express $x^2 + y^2$ in terms of θ . Hence show that

$$x^2 + y^2 = 125 + 100\cos\theta.$$
 [4]

(iii) Using this result, or otherwise, find the greatest and least distances of C from O. [2]

You are given that, at the point B on the path vertically above O,

$$2\cos^2\theta + 2\cos\theta - 1 = 0.$$

(iv) Using this result, and the result in part (ii), find the distance OB. Give your answer to 3 significant figures. [4]

5 Show that $\cot 2\theta = \frac{1 - \tan^2 \theta}{2 \tan \theta}$.

Hence solve the equation

$$\cot 2\theta = 1 + \tan \theta \quad \text{for } 0^\circ < \theta < 360^\circ.$$
^[7]