1 Given that $\operatorname{cosec}^{2} \theta-\cot \theta=3$, show that $\cot ^{2} \theta-\cot \theta-2=0$.
Hence solve the equation $\operatorname{cosec}^{2} \theta-\cot \theta=3$ for $0^{\circ} \leqslant \theta \leqslant 180^{\circ}$.

2 Archimedes, about 2200 years ago, used regular polygons inside and outside circles to obtain approximations for π.
(i) Fig. 8.1 shows a regular 12 -sided polygon inscribed in a circle of radius 1 unit, centre O . AB is one of the sides of the polygon. C is the midpoint of AB . Archimedes used the fact that the circumference of the circle is greater than the perimeter of this polygon.

Fig. 8.1
(A) Show that $\mathrm{AB}=2 \sin 15^{\circ}$.
(B) Use a double angle formula to express $\cos 30^{\circ}$ in terms of $\sin 15^{\circ}$. Using the exact value of $\cos 30^{\circ}$, show that $\sin 15^{\circ}=\frac{1}{2} \sqrt{2-\sqrt{3}}$.
(C) Use this result to find an exact expression for the perimeter of the polygon.

Hence show that $\pi>6 \sqrt{2-\sqrt{3}}$.
(ii) In Fig. 8.2, a regular 12-sided polygon lies outside the circle of radius 1 unit, which touches each side of the polygon. F is the midpoint of DE. Archimedes used the fact that the circumference of the circle is less than the perimeter of this polygon.

Fig. 8.2
(A) Show that $\mathrm{DE}=2 \tan 15^{\circ}$.
(B) Let $t=\tan 15^{\circ}$. Use a double angle formula to express $\tan 30^{\circ}$ in terms of t.

Hence show that $t^{2}+2 \sqrt{3} t-1=0$.
(C) Solve this equation, and hence show that $\pi<12(2-\sqrt{3})$.
(iii) Use the results in parts (i)(C) and (ii)(C) to establish upper and lower bounds for the value of π, giving your answers in decimal form.

3 Express $\sin \theta-3 \cos \theta$ in the form $R \sin (\theta-\alpha)$, where R and α are constants to be determined, and $0^{\circ}<\alpha<90^{\circ}$.

Hence solve the equation $\sin \theta-3 \cos \theta=1$ for $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.

Fig. 8
In a theme park ride, a capsule C moves in a vertical plane (see Fig. 8). With respect to the axes shown, the path of C is modelled by the parametric equations

$$
x=10 \cos \theta+5 \cos 2 \theta, \quad y=10 \sin \theta+5 \sin 2 \theta, \quad(0 \leqslant \theta<2 \pi)
$$

where x and y are in metres.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{\cos \theta+\cos 2 \theta}{\sin \theta+\sin 2 \theta}$.

Verify that $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $\theta=\frac{1}{3} \pi$. Hence find the exact coordinates of the highest point A on the path of C .
(ii) Express $x^{2}+y^{2}$ in terms of θ. Hence show that

$$
\begin{equation*}
x^{2}+y^{2}=125+100 \cos \theta \tag{4}
\end{equation*}
$$

(iii) Using this result, or otherwise, find the greatest and least distances of C from O .

You are given that, at the point B on the path vertically above O ,

$$
2 \cos ^{2} \theta+2 \cos \theta-1=0
$$

(iv) Using this result, and the result in part (ii), find the distance OB. Give your answer to 3 significant figures.

5 Show that $\cot 2 \theta=\frac{1-\tan ^{2} \theta}{2 \tan \theta}$.
Hence solve the equation

$$
\begin{equation*}
\cot 2 \theta=1+\tan \theta \quad \text { for } 0^{\circ}<\theta<360^{\circ} . \tag{7}
\end{equation*}
$$

